17 research outputs found

    Pop-up concrete constructions: forming fabric reinforced concrete sheets

    Get PDF
    New technologies and fabrication tools urge us to explore new materials and their potential for integration in architectural construction. One such material, Concrete Canvas, is explored in this paper for its hybrid characteristics that blend fabric and thin-shell tectonics. The potential of Concrete Canvas lies in its ability to modify itself from a flexible fabric that when activated with water becomes a rigid concrete structure. Combined with a digitally controlled workflow of on-site cutting and an iterative material feedback loop, the process can serve as a radical alternative to current concrete formwork fabrication techniques. This paper outlines a prototypical design process that combines a phase-changing material, physical computer simulations, robotic fabrication and scanning technologies on a feedback loop between the digital and the physical that allow for customized, free-form, on-site concrete structures to pop-up without the need of a complex formwork. In this process the architect sets the various parameters based on fabrication techniques and material properties and adjusts them iteratively in the physical and digital model during the ‘popping-up’ process until a balance between material properties, technical requirements and aesthetics is reached, exploring new potentials on digital fabrication processes. The paper outlines the proposed workflow including iterative experiments with robotic cutting of flat patterns, their ‘popping-up’ into 3D concrete shells, and material phase transitions during its forming process. The established feedback loop consisting of geometry scanning, parametric perforation pattern control, computational analysis and simulation, and robotic fabrication is described in detail. The paper concludes by exploring the potential of this process to enable a dialogue between digital architecture and the process of materialization and discusses the implications of this approach in relation to architectural design and fabrication workflow

    RAF | A framework for symbiotic agencies in robotic – aided fabrication

    Get PDF
    The research presented in this paper utilizes industrial robotic arms and new material technologies to model and explore a different conceptual framework for ‘robotic-aided fabrication’ based on material formation processes, collaboration, and feedback loops. Robotic-aided fabrication as a performative design process needs to develop and demonstrate itself through projects that operate at a discrete level, emphasizing the role of the different agents and prioritizing their relationships over their autonomy. It encourages a process where the robot, human and material are not simply operational entities but a related whole. In the pre-actual state of this agenda, the definition and understanding of agencies and the inventory of their relations is more relevant than their implementation. Three test scenarios are described using human designers, phase-changing materials, and a six-axis industrial robotic arm with an external sensor. The common thread running through the three scenarios is the facilitation of interaction within a digital fabrication process. The process starts with a description of the different agencies and their potentiality before any relation is formed. Once the contributions of each agent are understood they start to form relations with different degrees of autonomy. A feedback loop is introduced to create negotiation opportunities that can result in a rich and complex design process. The paper concludes with speculation on the advantages and possible limitations of semi-organic design methods through the emergence of patterns of interaction between the material, machine and designer resulting in new vistas towards how design is conceived, developed, and realised

    Investigations in robotic-assisted design: Strategies for symbiotic agencies in material-directed generative design processes

    Get PDF
    The research described in this article utilises a phase-changing material, three-dimensional scanning technologies and a six-axis industrial robotic arms as vehicles to enable a novel framework where robotic technology is utilised as an ‘amplifier’ of the design process to realise geometries that derive from both constructive visions and architectural visions through iterative feedback loops between them. The robot in this scenario is not a fabrication tool but the enabler of an environment where the material, robotic and human agencies interact. This article describes the exploratory research for the development of a dialogic design process, sets the framework for its implementation, carries out an evaluation based on designer use and concludes with a set of observations. One of the main findings of this article is that a deeper collaboration that acknowledges the potential of these tools, in a learning-by-design method, can lead to new choreographies for architectural design and fabricatio

    Robotic Assisted Design: A study of key human factors influencing team fluency in human‐robot collaborative design processes

    Get PDF
    Architecture is going through a new phase of consolidation after a paradigm shift on how architecture is conceived and produced. It includes an increase in interdisciplinary approaches, a deep relationship between architecture and technology, a new era of trial and error – of prototyping in theory and in practice – and, most importantly, a change in the relationship between thinking and doing. Work within architecture research laboratories has focused on connecting parametric models with robotic manufacturing tools and materials that allow the production of many different, customised parts. This idea stems from viewing robots as precisely controlled machines for fabrication and has led to the current scenario of relatively unchanged models of human-machine interaction and design processes. However, evolution in the field of human–robot collaboration suggests that the implementation of technological change should not be viewed simply as an engineering problem. It is crucial to understand the human factors that are needed for the successful integration and implementation of new technologies. This dissertation aims to understand key human factors that influence the development of symbiotic agencies in robotic‐assisted design. It explores the relationship between digital architectural design and its materialisation through a collaborative process between designer manipulation, phase‐changing materials and robotic fabrication. In this context robotic technology is utilised as an ‘amplifier’ in the design process to realise geometries and architectural visions through iterative feedback loops. The robotic environment enables synchronised analogue and digital modelling through robotic agency within a dialogic design process between materials, computational hardware, software tools and the designer. Experiments, case studies and a controlled user study have been developed to test this workflow and evaluate the theoretical framework of key human elements that need to be considered for the successful implementation of human-robot collaboration in the architectural design proces

    Robotic assisted design workflows: a study of key human factors influencing team fluency in human-robot collaborative design processes

    Get PDF
    This paper presents the initial results and rationale towards the development of human-robot collaborative design workflows. An introduction to the basis of collaborative workflows and its impact for robots in architectural design is presented. Key elements, such as trust, reliance and robustness for the successful cooperation between humans and robots are identified and analysed. Human-robot collaboration is a multidimensional construct context dependent, this makes essential to understand how trust and team fluency develop when non-expert designers interact with industrial robots. A design process is then described based on sensor feedback, and phase-changing material formations that encourages human-robot collaboration during the genesis of the design. Two stages of development are presented. In stage one, an exploratory study was conducted to collect designers’ opinions quantitatively and qualitatively. The results were analysed and led to the identification of the primary parameters that affect human-robot collaboration in the design process. In the second stage, machine learning is used to enhance the collaborative characteristics of the robotic partner in relation to the formation process of the material. The results reveal insights on human perceptions of robotic collaboration, and also explore neural-network-based feedback to enable expanded collaboration and communication between the robot and the designer

    A collaborative approach to digital fabrication: a case study for the design and production of concrete 'pop-up' structures

    Get PDF
    The research presented in this paper utilizes industrial robotic arms and new material technologies to model and explore a prototypical workflow for on-site robotic collaboration based on feedback loops. This workflow will ultimately allow for the construction of customized, free-form, on-site concrete structures without the need for complex formwork. The paper starts with an explanation of the relevance of collaborative robotics through history in the industry and in architecture. An argument is put forward for the need to move towards the development of collaborative processes based on feedback loops amongst the designer, the robot and the material, where they all inform each other continuously. This kind of process, with different degrees of autonomy and agency for each actor, is necessary for on-site deployment of robots. A test scenario is described using an innovative material named concrete canvas that exhibits hybrid soft fabric and rigid thin-shell tectonics. This research project illustrates the benefits of integrating information-embedded materials, masscustomization and feedback loops. Geometry scanning, parametric perforation pattern control, computational analysis and simulation, and robotic fabrication were integrated within a digital fabrication deployment scenario. The paper concludes with a detailed report of research findings and an outline for future work

    RAF | A framework for symbiotic agencies in robotic – aided fabrication

    Get PDF
    The research presented in this paper utilizes industrial robotic arms and new material technologies to model and explore a different conceptual framework for ‘robotic-aided fabrication’ based on material formation processes, collaboration, and feedback loops. Robotic-aided fabrication as a performative design process needs to develop and demonstrate itself through projects that operate at a discrete level, emphasizing the role of the different agents and prioritizing their relationships over their autonomy. It encourages a process where the robot, human and material are not simply operational entities but a related whole. In the pre-actual state of this agenda, the definition and understanding of agencies and the inventory of their relations is more relevant than their implementation. Three test scenarios are described using human designers, phase-changing materials, and a six-axis industrial robotic arm with an external sensor. The common thread running through the three scenarios is the facilitation of interaction within a digital fabrication process. The process starts with a description of the different agencies and their potentiality before any relation is formed. Once the contributions of each agent are understood they start to form relations with different degrees of autonomy. A feedback loop is introduced to create negotiation opportunities that can result in a rich and complex design process. The paper concludes with speculation on the advantages and possible limitations of semi-organic design methods through the emergence of patterns of interaction between the material, machine and designer resulting in new vistas towards how design is conceived, developed, and realised
    corecore